Tag Archives: CD20

Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL)

CLL/SLL represents a B-cell neoplasm of small lymphocytes which involve a combination of peripheral blood, bone marrow, and/or lymph nodes.  When peripheral blood predominates, then it is referred to as CLL, and when it presents as predominately nodal involvement it is referred to as SLL.  This is the same disorder with different manifestations.

Continue reading Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL)

Follicular Lymphoma

Follicular Lymphoma (FL) is a mature B-cell lymphoma, which recapitulates or resembles germinal center B-cells.  Most cases (~85%) harbor the characteristic t(14;18), which juxtaposes the BCL-2 gene on chromosome 18 with the IgH gene on chromosome 14 (and hence BCL-2 IHC protein expression).  Most patients (~80-85) will present with advanced disease (stage III/IV), and bone marrow involvement is found in ~40% of cases with characteristic paratrabecular aggregates (mantle cell lymphoma and lymphoplasmacytic lymphoma may also have paratrabecular lymphoid aggregates).  Most of the cases that lack the t(14;18) IgH/BCL-2 translocation (and are BCL-2 negative) are typically grade 3 FLs with a BCL-6 translocation (~10-15%).  BCL-6 translocations can be evaluated for by FISH analysis, but the finding is NOT specific for FL.
 
Over time 30-50% of cases transform to diffuse large B-cell lymphoma (DLBCL).  In a small subset of transformations, a second “hit” with a MYC translocation will occur resulting in a very aggressive high grade large B-cell lymphoma: the so-called “double hit” lymphoma. 
Morphology
FL usually has at least a component of nodularity (+/- diffuse areas).  There are two cell types that make up FL, centrocytes and centroblasts.  Centrocytes are small cleaved cells with folded irregular nuclei.  Centorblasts are large cells with more open chromatin, multiple nucleoli, and more cytoplasm compared to centrocytes.  
 
Sometimes FL can have patterns that resemble marginal zone lymphoma, and can even have plasmacytic differentiation.  Therefore, it is important that a panel of markers be used to identify (or exclude) evidence of germinal center differentiation.  Occasional cases can have Hodgkin-like cells.
Immunophenotype 
Marker
Comment
Negative
Positive
Positive
Positive
  • Grade 1 – ~90%
  • Grade 2 – ~70%
  • Grade 3 – ~60%
Positive (~90%), negative cases do not contain the t(14;18), which is more common in grade 3 cases
  • Grade 1 – >90% + for BCL-2
  • Grade 2 – >80% + for BCL-2
  • Grade 3 – 50-70% + BCL-2
Positive, (~88%)
CD35
Highlights the follicular dendritic meshwork associated with FL.
Usually negative, higher grade lesions may be positive
Variable, shows low expression in low-grade processes, in distinct contrast to the high proliferation index and polarity associated with reactive germinal centers.
Negative
 
 
FL is typically expresses CD19, CD20, CD10, Bcl-6, and BCL-2 (~90%).  CD5 is not expressed in FL.  
  • Normal reactive germinal centers do not express Bcl-2.  In 90% of cases of FL, bcl-2 is expressed, which serves as a diagnostic tissue marker in lymphoma sections.
  • CD23 expression by flow cytometry has been associated with lower grade FLs (e.g. grade 1 & 2) and better survival.
Grading
  • Grade 1 & 2:  <= 15 centroblasts/HPF (based on 0.159 mm² HPF)
  • Grade 3:  > 15 centroblasts/HPF (based on 0.159 mm² HPF)
    • 3A:  Centrocytes present in the background
    • 3B:  NO centrocytes present in the background (not associated with the IgH/BCL-2 rearrangement, and usually lacks expression of CD10 and BCL-2; often MUM-1+)
Grade 1 & 2 behave in a similar fashion as a low grade lymphoma.  Grade 3 FL behaves as an intermediate grade lymphoma.  Grading of FL with counting of large cells must take into consideration the field diameter of the microscope being used.  The counts above are based on a F.N. 18 (0.159 mm² @ 40X).  Most convention pathology scopes today are F.N. 22 (0.247 mm² @ 40X), and adjustments are necessary.
Pattern
  • Predominately follicular:  >75% follicular/nodular architecture
  • Follicular and diffuse:  25-75% Diffuse areas or follicular/nodular architecture
  • Preominately diffuse:  <25% follicular/nodular areas (diffuse areas of otherwise grade 3 FL, then that component should be described as a separate component of diffuse large B-cell lymphoma)
Special Subtypes 
  • Large B-Cell Lymphoma with IRF4 Rearrangement
  • Pediatric Follicular Lymphoma
    • Occurs in children and young adults with an excellent prognosis, marked male predilection
    • The morphology is high-grade (FL grade 3) appearing
      • BCL-2 negative, lacK t(14;18)
      • CD10 + (usually)
      • MUM-1 negative
    • Associated with TNFRSF14 deletions of mutations
    • Localized process, usually in the head and neck area
  • Duodenal Follicular Lymphoma
    • Localized lesion
    • Grade 1-2 pattern
    • CD10/BCL-2 +
    • t(14;18) present
    • Lacks follicular dendritic meshwork
    • Ki-67, low expression
    • Excellent prognosis
  • Predominately Diffuse Follicular Lymphoma with 1p36 deletion
    • Localized mass (often inguinal)
    • Diffuse pattern, grade 1/2 
    • Excellent prognosis
    • Immunophenotype:  CD20+, CD10+, BCL-2+, BCL-6+, CD23+ (subset of cases)
    • t(14;18) NOT present
    • 1p36 deletion (not specific)
    • Lacks Bcl-2 rearrangement
  • Primary Cutaneous Follicular Lymphoma 
  • In Situ Follicular Neoplasm (ISFN)

References
Robbins and Cotran Pathologic Basis of Disease.  V Kumar, et al. 9th Edition. Elsevier Saunders. 2015. pp. 594-595.
 
Fedoriw Y, Dogan A. The Expanding Spectrum of Follicular Lymphoma. Surg Pathol Clin. 2016;9: 29–40. doi:10.1016/j.path.2015.11.001
 
Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127: 2375–2390. doi:10.1182/blood-2016-01-643569
 
Xerri L, Dirnhofer S, Quintanilla-Martinez L, Sander B, Chan JKC, Campo E, et al. The heterogeneity of follicular lymphomas: from early development to transformation. Virchows Arch. 2016;468: 127–139. doi:10.1007/s00428-015-1864-y
 
MD DY-PW, BacSc F. A case of t (14; 18)-negative follicular lymphoma with atypical immunophenotype: usefulness of immunoarchitecture of Ki67, CD79a and follicular dendritic cell …. … Malaysian journal of …. 2014.
 
Boyd SD, Natkunam Y, Allen JR, Warnke RA. Selective immunophenotyping for diagnosis of B-cell neoplasms: immunohistochemistry and flow cytometry strategies and results. Appl Immunohistochem Mol Morphol. 2013;21: 116–131. doi:10.1097/PAI.0b013e31825d550a
 
Cook JR. Nodal and leukemic small B-cell neoplasms. Mod Pathol. 2013;26 Suppl 1: S15–28. doi:10.1038/modpathol.2012.180
 
Olteanu H, Fenske TS, Harrington AM, Szabo A, He P, Kroft SH. CD23 Expression in Follicular Lymphoma: Clinicopathologic Correlations. Am J Clin Pathol. 2011;135: 46–53. doi:10.1309/AJCP27YWLIQRAJPW
 
Gradowski JF, Jaffe ES, Warnke RA, Pittaluga S, Surti U, Gole LA, et al. Follicular lymphomas with plasmacytic differentiation include two subtypes. Mod Pathol. 2010;23: 71–79. doi:10.1038/modpathol.2009.146
 
Katzenberger T, Kalla J, Leich E, Stöcklein H, Hartmann E, Barnickel S, et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113: 1053–1061. doi:10.1182/blood-2008-07-168682
 
Bayerl MG, Bentley G, Bellan C, Leoncini L, Ehmann WC, Palutke M. Lacunar and reed-sternberg-like cells in follicular lymphomas are clonally related to the centrocytic and centroblastic cells as demonstrated by laser capture microdissection. Am J Clin Pathol. 2004;122: 858–864. doi:10.1309/PMR8-6PHK-K4J3-RUH3

Mantle cell lymphoma

Mantle cell lymphoma (MCL) is a mature B-cell neoplasm, which represents 2-3% of cases of non-Hodgkin lymphoma in the US.  The IgH/Cyclin D1 translocation is characteristic of this lymphoma, and can be confirmed by FISH testing in almost all cases.  Clincially, patients often present with widespread disease.  In addition to adenopathy, patient often have involvement of blood (20-40%) and other organ sites (gastrointestinal tract, liver spleen,  bone marrow).
Morphology
MCL is typically characterized by a small to intermediate sized lymphocytes with an irregular nuclear membrane (CLL/SLL tends to have a smoother nuclear membrane and follicular lymphoma has cleaved cells).  A subset of cases have a larger size and increased mitotic rate and can be confused with acute lymphoblastic lymphoma, and are referred to as the “blastoid” variant of MCL.
 
2008 WHO Classification identifies multiple morphologic variant including: blastoid variant (resembles ALL with increased mitoses), pleomorphic (also aggressive), small cell variant (resembles CLL/SLL), and marginal zone-like morphology.  Architectural pattern can have a diffuse pattern (often with scattered histiocytes within the infiltrate) or nodular (resembling follicular lymphoma).  Minimal lymph node involvement can show expansion of the mantle zones with relative intact lymph node architecture.  Bone marrow involvement can have a varied appearance, but can mimic follicular lymphoma with paratrabecular aggregates.
2016 WHO Classification Revision
Two subtypes of mantle cell lymphoma are now recognized, which center around the mutation status of IgHV.
  • IgHV unmutated/minimally mutated (mostly SOX11+) – classical disease that is aggressive, typically involves lymph nodes and other extra nodal sites.
  • IgHV mutated (SOX11 negative) – associated with indolent non-nodal disease with peripheral blood and bone marrow involvement.  Some of these cases may have been difficult to separate from CLL/SLL in the past.
Half of cyclin D1 negative cases show a CCND2 rearrangement.
Molecular Characteristics
  • FISH + for t(11;14)
  • Cytogenetics + t(11;14) ~70% of cases
  • 50% of Cyclin D1 negative cases have CCND2 rearrangements
Immunophenotypic Expression Pattern

 

 

Marker
Comment
Negative
Positive (93-95%).  Some data indicates up to 12% of MCL cases may be negative for CD5.
Negative.  Up to 8% of cases may express CD10 (expression will usually be <30%).
Positive
Positive
Negative.  21% may express CD23.
Positive.  Nuclear expression.  The rabbit monoclonal antibody clone SP4 appears to have the highest sensitivity and stain intensity.  Sensitivity ~95%.
Positive
Negative (~12% of cases may have expression)
Usually negative (35% may be positive, of these 2/3rds will also be bcl-6+)
Highlights the residual FDC meshwork.
Inverse relationship between quantitative Ki-67 index and prognosis.  Ki-67 >40% is an adverse prognostic factor.
 Expressed in classic form and lack of expression is associated with more indolent variant of MCL.
Important caveats
Cyclin D1 expression is not entirely specific for mantle cell lymphoma.  Some expression can be seen in a zonal pattern in CLL/SLL in proliferation centers.   Other entities such as plasma cell myeloma (up to 50%) and hairy cell leukemia can also express cyclin D1.  CD10 (8%), Bcl-6, and CD23 (21%) has been reported to be expressed in a small number of cases.  Loss of CD5 (12%) has been noted in some cases.  Most of these studies were by flow cytometry.
 
CD5 expression on a B-cell lymphoma should practically result in testing for exclusion of a t(11;14) IgH/Cyclin D1 gene fusion.  There are other B-cell lymphomas, which may also have CD5 expression (e.g. DLBCL, CLL/SLL, etc.) that are not MCL and have separate prognostic characteristics because of/or separate from CD5 expression.
 
Rarely, plasmacytic differentiation may be identified.  Classic MCL is derived form naive B-cells, which tends to not to progress to plasmacytic differentiation, compared to post germinal center derived B-cell lesions, which more commonly have plasmacytic differentiation.
 
Ki-67 staining index has been shown to be directly proportional the aggressiveness of the clinical course (higher staining index, more aggressive).

References
WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues.  SH Swerdlow,et al.International Agency for Research on Cancer. Lyon, 2008. p. 229-231.
 
Robbins and Cotran Pathologic Basis of Disease.  V Kumar, et al. 9th Edition. Elsevier Saunders. 2015. pp. 602-603.
 
Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127: 2375–2390. doi:10.1182/blood-2016-01-643569
 
Katzenberger T, Petzoldt C, Höller S, Mäder U, Kalla J, Adam P, et al. The Ki67 proliferation index is a quantitative indicator of clinical risk in mantle cell lymphoma. Blood. 2006;107: 3407. doi:10.1182/blood-2005-10-4079
 
Gao J, Peterson L, Nelson B, Goolsby C, Chen Y-H. Immunophenotypic variations in mantle cell lymphoma. Am J Clin Pathol. 2009;132: 699–706. doi:10.1309/AJCPV8LN5ENMZOVY
 
Boyd SD, Natkunam Y, Allen JR, Warnke RA. Selective immunophenotyping for diagnosis of B-cell neoplasms: immunohistochemistry and flow cytometry strategies and results. Appl Immunohistochem Mol Morphol. 2013;21: 116–131. doi:10.1097/PAI.0b013e31825d550a
 
Young KH, Chan WC, Fu K, Iqbal J, Sanger WG, Ratashak A, et al. Mantle cell lymphoma with plasma cell differentiation. Am J Surg Pathol. 2006;30: 954–961.
 
Gualco G, Weiss LM, Harrington WJ, Bacchi CE. BCL6, MUM1, and CD10 expression in mantle cell lymphoma. Appl Immunohistochem Mol Morphol. 2010;18: 103–108. doi:10.1097/PAI.0b013e3181bb9edf
 
Wang H-Y, Zu Y. Diagnostic Algorithm of Common Mature B-Cell Lymphomas by Immunohistochemistry. Arch Pathol Lab Med. 2017;141: 1236–1246. doi:10.5858/arpa.2016-0521-RA

CD79a

CD79a (MB1) is a B-cell marker with a wider range of positivity in the B-cell development spectrum compared to CD20 (mature B-cell phenotype).  CD79a may be expressed on malignant precursor B-cells and terminally differentiated B-cells (PAX-5 is not expressed in terminally differentiated B-cells).  Please note that in the setting of ALL, CD79a is not lineage specific, and up to 50% of T-ALL cases express CD79a.  AML cases with t(8;21) may also show CD79a expression (along with CD19, CD20, and TdT).

Continue reading CD79a